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ABSTRACT ARTICLE INFO

Keywords:
An earthen dam is a structure made of soil particles that are bonded together Earth dam
and compacted in layers using mechanical methods. depend on their weight Multiple ANN
to combat forces such as sliding & overturning. Seepage passage during earth Seepage
dam is the principal cause of collapse owing to erosion, scouring, and piping. Duhok dam
The passage of water during soil can result in the displacement of the
particles. Ongoing motion induces erosion. This study depends on Artificial
Neural Networks (ANN) for estimation seepage in Duhok dam, utilizing Article history:

measured upstream water level and flow rate, as well as piezometric head
measurements from four distinct parts of the dam structure. The findings
indicated excellent model efficacy. Artificial Neural Network models
necessitate less field data, rendering them advantageous for dam safety
evaluations, providing insights into their relative efficacy in forecasting
seepage in earthen dams under diverse scenarios. The results were derived
from established statistical metrics R? MAE, MAPE and E-NASH. This research
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1. Introduction

Population Dams are constructions utilized primarily for
water storage, electricity generation, and irrigation. Dams are
primarily categorized into four types based on construction
materials and design: gravity dams, buttress dams, arch dams,
and embankment dams. Embankment dams are categorized into
two types: homogeneous and nonhomogeneous dams. Non-
homogeneous dams consist of various components, each
significantly impacting the dam's performance, stability, and
other design elements independently [1]. More than 85% of all
constructed dams are embankment dams[2].

An earthen dam is a structure made of soil particles that are
bonded together and compacted in layers using mechanical
methods. Earth dams often possess a trapezoidal form featuring
a wide base. It was engineered as a non-overflow segment
featuring an independent spillway. In the design of an earth dam,
the base, abutments, and embankment must be regarded as a
cohesive unit. In this type of dam, the soil's shear strength
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guarantees its stability [3]. Earth dams can be split into four
principal types: homogeneous earth dams, zoned earth dams,
earthfill dams with core walls, and concrete-faced earth dams
[4]. Salem, et al. [3] conducted experimental and numerical
studies on seepage through the body of an earth dam, both with
and without an interior core. Various models have been analyzed
utilizing the GEOSTUDIO (2012) software concerning SEEP/W
and SLOPE/W. SEEP/W was utilized for seepage calculations,
whilst SLOPE/W was employed for slope stability studies.
SLOPE/W a subprogram of Geo-Slope software was utilized by
Zedan , et al. in conjunction with SEEP/W software to determine
the factor of safety of the upstream slip surface through
drawdown conditions for Khasa Chai dam [5].

Erosion in earthen constructions transpires when seepage
pressures surpass the soil's resistance, which is contingent upon
cohesion, particle interlinking, soil weightas well as
downstream protection. As seepage in earthen constructions is
irregular, erosion is exacerbated in regions with considerable
seepage [0]. The seepage lane within the dam's structure is
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crucial for the planning and execution of economically and
technically viable remedial stability measures, as excessive
seepage may jeopardize the dam's stability [7]. Hutchison [7]
created a model for the Texas Instruments TI-59 programmable
calculator to estimate reservoir seepage. The dam seepage model
delineates flow through and beneath the dam by positing that, the
interface between the dam and its foundation constitutes a
streamline. The employed algorithm is founded on Darcy's law,
Dupuit's postulates, and Bear's hydraulic methodology.
Mohammadi et al. [8] progressed three evolutionary algorithms:
Shuffled Complex Evolution (SCE), Simulated Annealing (SA),
and Genetic Algorithm (GA) to optimize the geometry of the
Birjand Hesar Sangi earth dam core, focusing on seepage
integration, hydraulic gradient, and stability safety factor
constraints.

Artificial- Neural- Networks ~ (ANN)  are  fundamental
components utilized in machine-learning. Owing to their
remarkable self-learning and self-adapting abilities, they have
been thoroughly researched and effectively employed to address
complex real-world challenges [9]. The ANN can be
characterized as a fundamental engineering principle within the
domain of artificial intelligence. This network is engineered by
emulating the human nervous system. An ANN is a network of
interconnected nodes or neurons. These nodes can retain
experiential information and render it accessible for utilization.
These nodes represent the fundamental units of information
processing. The training of ANN encompasses various
methodologies and applications, including Perceptron, Back-
propagation, Self-Organizing Map (SOM) and Delta [10].

A multitude of neural- networks have been created and examined
in recent decades. This encompasses self-organizing networked
neurons, the Hopfield networks, the radial basis- function
networks, Boltzmann's machine, mean field theory machines,
and multiple-layer perceptron’s, (MLPs) [11]. A literature study
conducted by Shahin et al. in 2001 indicates that artificial neural
networks (ANNs) have been effectively employed to solve some
geotechnical engineering challenges [12]. In this research MLP
was used.

MLP neural networks comprise units organized in layers. Each
layer consists of nodes, and in the fully interconnected networks,
each node is linked to every node in the subsequent layers. Each
MLP comprises at least three layers, which include an input
layer, various hidden layers, and a layer for the output [11]. The
research provided by Arslan, et al. predicts the discharge
coefficient of cylinder-shaped crest weirs utilizing various
diameters, angles of inclination, and bed slopes. Also, the
adaptive-neuro-fuzzy-inference-system (ANFIS) and multilayer
perceptron (MLP) models were employed utilizing 143
laboratory test [13]. In 2001,Manry, et al. introduced three
techniques that assist academics in applying the MLP to signals
processing challenges [14]. Shahin et al. [15] employed
artificial-neural-networks to achieve enhanced accuracy in
settlement predictions. A substantial database of empirically
measured settlements is utilized to create and validate the model
of ANN. The anticipated settlements derived from the use of
ANN:S are juxtaposed with the values forecasted by three widely
employed conventional approaches. This study investigates
seepage in Duhok earth-fill dams because the study of seepage
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helps to ensure the sustainability of the operation of earth dams
and reduce the risks associated with them.

2. Methodology
2.1. Case Study

The Duhok Dam is a substantial earth-fill dam featuring a
central clay core and a gravel shell, situated on the Rubar Duhok
(2) kilometers north of Duhok city in northwestern Iraq, near the
Turkish border [16], between the latitudes 36°52'35" N-—
36°54'21" N, and the longitudes 42°59'51" E— 43°00'40" E as
shown in Figure 1. It was formed in 1988 [17]. Duhok Dam is
situated in the southwestern section of what is called Be khair
Anticline [18]. The parameters for the dam and reservoir are a
height of 60.5 meters, a crest length of 740 meters, and a width
of 9 meters. The reservoir has a capacity of 52 million m* and a
total area ranging from 1,670,000 m? to 2,800,000 m? [19]. Both
the main and coffer dams are constructed as earth-fill structures
including a central clay core, flanked by a layer of filter material
on each side, and protected by a shell of sand and gravel [20], as
shown in Figure 2 [21]. The primary objective of the dam was to
irrigate the agricultural regions inside Duhok city and its
surrounding territories up to Summel city via a tunnel. Currently,
the reservoir area of the dam serves to supply Duhok city with
water and has also developed into a tourist destination [17].

2.2. Artificial-Neural-Network

A multi-artificial neural network model was developed in
this study to estimate seepage in the Duhok Dam. Utilized data
sets were employed to train and to test the generated model. They
included water levels in the piezometers, as well as the water
level at the upstream side of the dam and the outflow rate.
MATLAB, along with the Neural-Network- Toolbox, was
utilized for model development. The upstream water level and
outflow rate were the input variables, while the piezometer water
levels were the outputs (targets) in the ANN model. Figure 3
shows the depiction of a multi-layered artificial neural network
architecture accompanied by a neuron illustration [22]. The
model employed a feed-forward-neural- network, utilizing a
sigmoid activation function and the Levenberg-Marquardt back
propagation algorithm for learning. The back propagation
algorithm is the most renowned method for training ANNs. Back
propagation involves exploring an error surface (error as a
function of artificial neural network weights) by gradient descent
to identify points with minimal error. Iteration in back
propagation has two phases: a forward pass to generate a solution
and a backward pass to propagate the computed error for weight
adjustment [23]. Various scenarios were simulated using distinct
layer activation functions and inputs. The situations were
simulated utilizing the available toolbox options, with
parameters modified by using the (nftool) function in MATLAB.
The artificial -neural -network model comprised three layers
(input, hidden, output) layers. The input layer had two neurons,
and the output layer also comprised two neurons. The quantity
of neurons in the hidden layer was ascertained by trial and error.
This methodology was executed across four designated portions,
each containing two piezometers, as depicted in the
accompanying diagram-(4): illustrating their placements [20].
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The numbers of hidden layers and neurons within the hidden
layer can be configured in the toolbox. All input and output data
were normalized to the range of (0-1) utilizing Excel. The
research employed water level data from eight piezometers,
comprising a total of 355 data sets gathered between July 27,
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Fig.1. Duhok dam location [17].

Kirkuk Journal of Engineering Science vol. 1: issue 1 (2025) 1-11

2004, and September 9, 2024. Out of them, 283 sets were
allocated for training the network, while 72 sets were designated
for testing and validating the model. The network was trained
using a predetermined learning rate.
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Fig. 3. Depiction of a multi-layered artificial neural network architecture
accompanied by a neuron illustration [22].

Fig. 4. The locations of the piezometers in Duhok dam [20].
3. Results and Discussion

3.1. Standardization Process
Normalization:

It is the procedure of normalizing the data to a certain range,
such as between (0 - 1) or between ( -1 - +1). Normalization
becomes crucial if there are significant disparities in the ranges
of certain variables. It is derived using the formula shown for
data standardization between (0-1):

Xi — X
X, = _J “min (1)
Xmax - Xmin
Denormalization:

This step should be performed if normalization is used. For
instance, to deformalize the data from the range of (0-1), the
following equation can be employed:

Xj = [Xn(XmaX - Xmin)]Xmin (2)
X, represents the normalized data,

X; denotes the measured or denormalized data,

Xmin and X, refer to the identical values utilized in the
normalization procedure [24].

Statistical Parameters:

Four prominent statistical criteria were applied to evaluate and
examine the performance of the employed models during
separate training and testing phases. These parameters include
Measure of Correlation (R?) , Mean- Absolute- Error (MAE)
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,Mean -Absolute- Percentage- Error (MAPE), Nash-Sutcliffe
Efficiency (E-Nash):

e 2= —X)(Ej —EDI°

= —— —— (3)
Yia (=) X}, (Ef — Ej)?
n
1
MAE = EZ|xj - E| “4)
j=1
n
IS5
MAPE = —Z (5)
le:1 Xj
n_(Xj — Ej)?
E—NASHzl—% (6)
j=1(XJ - EJ)
where:

Xj : real value,

X; : mean real value,

Ej : estimated value,

E; : mean estimated value [25]
3.2. Results

The upstream water levels and flow rate, and the
piezometric head values at different locations, were divided into
two separate sets: once for training and another for testing. About
80 %, of the data was assigned to the training set; while the other
20%, was given to the test set. This distribution corresponds to
approximately 283 values for the training phase and 72 values
for the testing phase throughout the complete series. The input
nodes represented both upstream water level and flow rates.
Simultaneously, the output node was tasked with representing
each individual piezometric head, a procedure executed for each
piezometer within every specified section. A three-layer Feed-
Forward- Back -Propagation- network was utilized, with training
conducted using the Levenberg Marquardt reduction algorithm.
A Tangent Sigmoid transfer function was employed for the
hidden layer, whilst a linear transfer function was applied to the
output layer. Table 1 presents the values of validation parameters
for both the training and test periods.

3.3. Discussion

Depending on the value of the measure of correlation R?,
which is significant as it assesses the quality of the match. If its
value approaches (1) The value of the slope of the regression line
is almost one, and its point of intercept is approximately zero.
The network training was completed effectively. The results in
the table above shown that Multiple- Artificial- Neural-
Networks presented excellent performance. A succinct
comparative can be derived through looking at the various
plotted series for the training and test phases. Figures 5 to 20
illustrate the comparative performance for each piezometric
heads.
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Table 1. Statistical parameter values for the ANN model for the piezometers in four section.

Name of Model No of TRAIN TEST
hidden
e MAE MAPE E-Nash R’ MAE MAPE E-Nash
Section (1) Pl 12 0.988 0.3557 0.0588 0.9881 0.992 0.2852 0.0470  0.9921
P2 12 0.929 03864 0.0645 0.9284 0.954 0.3137 0.0523 0.9531
Section (2) P3 10 0.980 0.4923 0.0813 0.9788 0.985 0.5113 0.0846 0.9848
P4 10 0.963 04134 0.0691 0.9628 0.978 0.3748  0.0626  0.9769
Section (3) P5 10 0.994 0.2554 0.0421 0.9936  0.997 0.2223  0.0367 0.9968
P6 10 0.971 03390 0.0568 0.9712 0.989 0.2379 0.0398 0.9884
Section (4) P7 9 0.996 0.2626 0.0433  0.9956 0.992 0.2596 0.0428 0.9910
P8 9 0.962 03173 0.0533 0.9622 0.902 0.3411 0.0574 0.8982
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Fig. 5. Recorded and forecasted water levels during piezometer P1 during training period.
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Fig. 6. Recorded and forecasted water levels during piezometer P1during test period.
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Fig. 7. Recorded and forecasted water level during piezometer P2 during training period.
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Fig. 8. Recorded and forecasted water level during piezometer P2 during test period
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Fig. 9. Recorded and forecasted water level during piezometer P3 during training period.
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Fig. 10. Recorded and forecasted water level during piezometer P3 during test period.
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Fig. 11. Recorded and forecasted water level during piezometer P4 during training period.

P4(TESt) —&— Recorded

—— Forecinled

Water levellm)

1 =2 3 a4 s e 7 B 9 10 11 1z 13 14 15 16 17 1s 19 20 21 22 23 24 25 26 27 28 29 30O 31 32 33 34 35 36
Time period

Fig. 12. Recorded and forecasted water level during piezometer P4 during test period.
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Fig. 13. Recorded and forecasted water level during piezometer PS5 during training period.
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Fig. 14. Recorded and forecasted water level during piezometer PS5 during test period.
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Fig. 15. Recorded and forecasted water level during piezometer P6 during training period.
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Fig. 16. Recorded and forecasted water level during piezometer P6 during test period.
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Fig. 17. Recorded and forecasted water level during piezometer P7 during training period.
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Fig. 18. Recorded and forecasted water level during piezometer P7 during test period.
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Fig. 19. Recorded and forecasted water level during piezometer P8 during training period.
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Fig. 20. Recorded and forecasted water level during piezometer P8 during test period.

4. Conclusions

The artificial neural network is an efficient and accessible

model for identifying patterns between input and output data,
provided it is supplied with adequate observed field data. The
results show that Multiple- Artificial- Neural- Networks
presented excellent performance. A succinct comparative can be
derived through looking at the various plotted series for the
training and test phases. Figures 5 to 20 illustrate the
comparative performance for each piezometric heads.
As stated earlier, all models were calibrated and validated using
data collected from piezometers strategically located along the
length of the Dohuk dam, which is designated for seepage
monitoring. It was capable of identify the correlation between
the upper reservoir water level and the flow rate and the
piezometers water levels. Consequently, it is feasible to
anticipate the trajectory of the seepage path within the earth-fill
dam. However, it is acknowledged that the ANNs operates as a
black box model. Thus, this facilitates the development and
implementation of both technically and economically effective
corrective stability measures. It is helpful engineers tasked with
dam safety in addressing unnatural seepage through an earth-fill
dam under diverse conditions.

The data utilized to substantiate this analysis was supplied by the
Ministry of Agriculture and Water Resources in Kurdistan
region- Iraq, the general directorate of dams and reservoirs, the
private Dohuk dam project management.
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