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A B S T R A C T   A R T I C L E  I N F O   

Inadequate hole cleaning significantly impacts drilling operations. For example, 
poor wellbore cleaning can result in various drilling issues, including a reduced 
rate of penetration (ROP), early bit wear, and, in extreme situations, well loss 
due to stuck pipe. Numerous studies have been carried out to comprehend how 
to reduce transport efficiency and offer potential remedies for the issue. They 
frequently provide empirical correlations based on experimental data. Many 
engineering fields have recently adopted artificial intelligence and machine 
learning. Consequently, oil and gas companies have increasingly used artificial 
neural networks (ANN) to forecast a number of crucial metrics. The purpose of 
this study is to use artificial intelligence approaches to forecast hole-cleaning 
efficiency. Two layers, TANSIG and LOGSIG transfer functions, and several 
training functions were used to construct feed-forward backpropagation ANN 
models. A dataset of 1,620 experimental records served as the basis for the 
investigation. Cutting density and pressure losses are included in the input 
parameters. Additionally, the model input consisted of drilling characteristics 
such as the drill pipe rotating speed (RPM), flow rate (GPM), pipe, and hole 
inclination angle. The best-performing model was selected using a sensitivity 
analysis using 2, 4, 6, and 10 neurons for each transfer function (LOGSIG and 
TANSIG). With a correlation coefficient (R) greater than 0.9, the results showed 
that the constructed model accurately predicted the cutting transport efficiency 
(TE) in the wellbore. The findings demonstrated that as the number of neurons 
increases, the model's accuracy in terms of R for training and testing also 
increases. The expected and real TE utilizing the TANSIG transfer function, GDM 
versus GD learning function, and four different training functions indicate that 
using the GDM adaption learning function generally outperforms the GD 
function. For instance, the correlation coefficient (R) for 10 neurons using the 
GDM function was 97.45 compared to 97.08 for the GD function. Additionally, 
results indicate that the LOGSIG transfer function a bit overperforms the results 
estimated by the TANSIG function at two and four neurons. However, at higher 
numbers of neurons, the TANSIG function performs better. Therefore, it is 
recommended that using the TANSIG transfer function with the GDM be used for 
future predictions of transport efficiency (TE). 
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1. Introduction  

Directional and horizontal wells have proven to be 

effective field development techniques, satisfying the need for 

enhanced oil recovery and reducing the overall cost of drilling 

operations [1]. Cuttings generated during drilling are typically 

removed from the wellbore using drilling mud. Flow rate 

[2],[3],[4], fluid properties [5],[6], solid characteristics [7], and 

the interactions between these parameters are the main factors 

controlling cutting removal. For instance, Tomren et al. [2] 

experimentally observed the forming of a cutting bed at low flow 

rates for wellbore inclinations between 10° and 30°. In addition, 

a higher tendency of cuttings build-up as wellbore inclination 

increased. Cho et al. [3] and Ravi and Hemphill [8] reported that 

the cutting height tends to be minimized by maximizing the flow 

rate. 

To date, downhole drilling technologies have advanced 

significantly [9]. However, there has been limited research on 

optimizing hydraulic settings and drilling operations. Therefore, 

to increase drilling efficiency and reduce costs, the industry 

needs innovative techniques and approaches to help rig-site staff 

make decisions on drilling parameters in real-time [1],[11],[12]. 

It is common practice to plan new wells utilizing data from 

existing wells in the area. Yet, this method remains traditional 

and often fails to effectively replicate past experiences and data. 

Additionally, the planned settings are frequently applied 

throughout the bit run without considering the actual down-hole 

conditions, which complicates the acquisition of comprehensive 

and high-quality data [9]. 

It has recently been demonstrated in the petroleum 

engineering sector that Artificial Neural Networks (ANNs) and 

simulation are both very good tools for forecasting the behavior 

of various aspects of petroleum design in the future 

[13],[14],[15],[16],[17],[18],[19]. For instance, Ozbayoglu et al. 

[20] completed the first artificial intelligence (AI)  study on hole 

cleaning in both horizontal and deviated wells. They used feed-

forward neural networks with a back-propagation learning 

algorithm (BPNN) to examine the cutting bed height. Rooki et 

al. [21] and Rooki and Rakhsh Khorshid [22] employed radial 

basis neural networks (RBFN) and BPNN for hole-cleaning 

prediction in foam drilling operations. They used experimental 

data involving pressure and temperature conditions, foam 

performance, foam velocity, eccentricity, and pipe rotational 

speed (RPM) as input parameters, while the output parameter 

was cutting concentration. Al-Azani et al. [23] concluded that 

the cutting concentration in the wellbore can be accurately 

predicted using a Supervised Vector Machine (SVM). However, 

to date, no experimental examinations of hole cleaning during 

drilling operations using AI approaches have been conducted. By 

measuring cutting concentration in the wellbore, this work 

attempts to create an ANN model that can be used to indirectly 

predict the hole cleaning efficiency. Transport efficiency (TE) is 

defined as the output parameter and five input parameters were 

used as model input parameters during neural network training. 

Ultimately, drilling engineers can utilize this prediction range to 

detect issues and guide decision-making. The validated neural 

network model can be used to accurately estimate hole cleaning 

efficiency in real-time. 

2. Methodology: Data Description and Building 
ANN Model 

In this work, a transport efficiency prediction model is 

developed using Artificial Intelligence (AI) tools. It is proposed 

that an Artificial Neural Network (ANN) provides a nonlinear 

function between inputs and output data for data processing and 

complex system modeling. These technologies use artificial 

neurons interconnected in a manner similar to biological neural 

networks and are based on several processing methodologies 

[24]. Typically, a multilayer neural network consists of input, 

hidden, and output layers. Typically, one hidden layer is tried for 

neural network model size optimization, as illustrated in Fig. 1. 

An artificial neural network with two feed-forward 

backpropagation network (BPNN) layers was used in this study. 

Additionally, two transfer functions with varying quantities of 

concealed neurons were used: the Log sigmoid and the 

Hyperbolic Tanh. The architecture, training network, and data 

preprocessing all have a significant impact on the network's 

efficacy and dependability [15],[25]. As a result, three subsets of 

the available data are optimally separated: training, validation, 

and testing. The total data are subsets into 70, 15, and 15 percent, 

respectively.  

The information utilized to construct the AI models is 

mentioned in Table 1. Over 1620 data points from experimental 

activities were gathered and utilized as input data. These data 

sets include inclination angle, particle density, flow rate, drill-

string rotational speed, and particle diameter. Additionally, data 

were carefully filtered to eliminate redundant and noisy 

information, which ensured the network was not affected by 

anomalous hole-cleaning data. Choosing the right network size 

is essential for maximizing simulation time [10],[25]. To 

determine the optimal model design, a sensitivity analysis was 

performed on the different parameters. Numerous attributes, 

including the number of neurons, training and transfer functions, 

and the number of hidden layers, were assessed to ascertain their 

impact on the ANN model's accuracy. Sensitivity analyses were 

implemented and evaluated using the correlation coefficient (R). 

Additionally, the neural network that performs the best is the one 

that most effectively fits the dataset. 

Table 1. Transport efficiency vs. selected parameters input parameters for the 
ANN model. 

Input Output  

Degree of inclination (o) 

Transport efficiency (TE) 

Particle density (ppg) 

Flow rate (gpm) 

Rotational per minute (RPM) 

Particle diameter (in) 

3. Results and Discussion 

This section examines the results obtained from the ANN 

models developed to estimate transport efficiency using the 

experimental values. Four distinct training functions were used 

to construct a feed-forward backpropagation network. To 

optimize the proposed ANN code, twelve primary scenarios 

were created. The outcomes were evaluated to determine the 

optimal model, using the parameters indicated in Table 2. For 
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this investigation, four distinct learning functions-LM, RP, SCG, 

and BR-were modified. There are two adaptation learning 

functions used: LEARNGD and LEARNGDM. In addition, to 

determine which ANN model was more effective in predicting 

TE, the TANSIG and LOGSIG transfer functions were 

implemented. We have checked the code running for every 

chosen parameter, and the outcomes were compared by means 

of the correlation coefficient (𝑅) with the actual data. 

Consequently, the optimal model parameter combination for 

process optimization was identified and put into practice. The 

data sets' training-to-testing and validation ratios were chosen to 

be 70% and 30%, respectively. This indicates that 243 data 

points were selected for each testing and validation procedure, 

while 1134 data points were chosen for training. 

 

Fig. 1. The architecture of the ANN model that was constructed. 

Figures 2-5 display the cross-plots for the ANN results for 

the model training, testing, and validation procedures. In general, 

the GDM adaptation learning function works better than the GD 

function when comparing the outcomes of anticipated and real 

TE utilizing the TANSIG transfer function, GDM versus GD 

learning function, and LM training function (Fig. 2 and Fig. 3). 

For example, the GDM function yields a correlation coefficient 

(𝑅) of 97.45 for 10 neurons, whereas the GD function yields a 

correlation coefficient of 97.08. These results overperform the 

results obtained by Azani et al. [23], in which the SVM model 

yielded correlation coefficients between the measured and the 

predicted values in the training and testing stages of 94% and 

93%, respectively. 

The results show that as the number of neurons increases, 

the model's accuracy in terms of 𝑅 for preparation and analysis 

improves. For instance, when the number of neurons increased 

from two to ten, the 𝑅 values of actual and anticipated TE rose 

from 94.50% to 97.45%. Conversely, Figs. 4 and 5 display the 

various 𝑅 values of the LOGSIG purpose for testing, training, 

and validation; the optimal outcomes are achieved with ten 

neurons. The GDM works better with a limited number of 

neurons for the LOGSIG transfer function. This indicates that, 

compared to the GD model, the tested ANN model with two and 

four neurons had a greater value of R for the GDM. Using the 

GD function, however, yields greater R values when the number 

of neurons is increased to 6, 8, and 10 (see Table 3). For example, 

using two neurons with GDM function yielded 𝑅 values of 

95.9%, 95.12%, and 93.42% for testing, training, and validation, 

respectively. Using two neurons and the GD function, the 

corresponding 𝑅 values of actual and projected TE are 94.62%, 

94.27%, and 95.54%. Therefore, we might suggest combining 

the GD adaptation learning function with the LOGSIG transfer 

function for improved prediction accuracy under certain 

configurations.  

Moreover, the results show that the LOGSIG transfer 

function has somewhat outperformed the TANSIG function's 

estimates of the outcomes at two and four neurons. However, the 

TANSIG function works better when there are more neurons. 

The correlation factor between several ANN models using 

TANSIG and LOGSIG transfer functions, as well as the GD and 

GDM adaptation learning functions, is illustrated in Fig. 6. In 

conclusion, we might propose that the TANSIG transfer function 

typically outperforms the LOGSIG transfer function with more 

neurons when combined with the GDM adaptation function. 

Table 3 provides a summary of the sensitivity analysis of every 

parameter used with the ANN model. Sensitivity study 

demonstrates that the training functions have little effect on the 

constructed ANN model and, thus, on the TE prediction 

performance in general. Thus, utilizing the TANSIG transfer on 

in conjunction with the GDM adaptation function, we might 

propose the following model for TE prediction: 

𝑇𝐸𝑛

= [∑ 𝑤2𝑖
(

2

1 + 𝑒−2(𝑤1𝑖,1𝑑𝑐+𝑤1𝑖,2𝜌𝑐+𝑤1𝑖,3𝜃+𝑤1𝑖,4𝑄+𝑤1𝑖,5𝑅𝑃+𝑏1𝑖)
)

𝑁

𝑖=1

− 1] + 𝑏2                                                                                           (1) 

TEde−n =
(TEn + 1)(TEmax − TEmin)

2
+ TEmin                      (2) 

The weights of the hidden and output layers are W1 and 

W2, respectively; the number of neurons is N; the bias of the 

layer is indicated by b; and the bias of the output layer is denoted 

as b2. Error! Reference source not found. below shows the 

values of the different parameters used in the above equations.

Table 1. Parameters of the suggested model equations. 

w1 W2 b1 b2 

-0.161 0.2185 -0.5057 -1.238 -0.4264 -1.078 0.61619 
0.1419 

-20.198 0.12504 75.3855 15.0679 3.7924 -0.0892 41.3223 

 

 

 

 

 
 



Duraid Al-Bayati, Sahmee Eddwan Mohammed, Siver Aldaloo                  Kirkuk Journal of Engineering Science vol. 1: issue 1 (2025) 40-47 

 

43 

Table 3. Implemented ANN model parameters 

Training 

Function 

Learning 

Function 

Transfer 

Function 

Number of Neurons 

in Hidden Layer 

Number of 

Hidden Layer 

Training, Testing, 

and Validation Ratio 

Lm 

GDM / GD 
Hyperbolic 

tangent  
2‒10 1 70, 15, 15 

GDM / GD 
Logistic 

sigmoid   
2‒10 1 70, 15, 15 

RP 

GDM / GD 
Hyperbolic 

tangent  
2‒10 1 70, 15, 15 

GDM / GD 
Logistic 

sigmoid   
2‒10 1 70, 15, 15 

SCG 

GDM / GD 
Hyperbolic 

tangent  
2‒10 1 70, 15, 15 

GDM / GD 
Logistic 

sigmoid   
2‒10 1 70, 15, 15 

BR 

GDM / GD 
Hyperbolic 

tangent  
2‒10 1 70, 15, 15 

GDM / GD 
Logistic 

sigmoid   
2‒10 1 70, 15, 15 

 

 
Tanh-2N-GDM 

 
Tanh-4N-GDM 

 
Tanh-6N-GDM 

 
Tanh-10N-GDM 

Fig. 2. Actual and anticipated TE utilizing the Tanh transfer function, GDM 

learning function, and LM training function 
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Tanh-2N - GD  

 
Tanh-4N – GD 

  
Tanh- 6N-GD 

 
Tanh-10N-GD 
Fig. 3. Predicted and actual TE using the Tanh transfer function, GD learning 

function, and LM training function. 

 
Log- 2N – GDM 

 
Log – 4N – GDM 
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Log – 6N - GDM  

 
Log – 10N – GDM 
Fig. 4. Actual and anticipated TE utilizing the Sigmoid transfer function, GDM 

learning function, and LM training function. 

 
Log – 2N – GD 

 
Log – 4N - GD 

 
Log – 6N – GD 

 
Log – 10N – GD 
Fig. 5. Actual and anticipated TE utilizing the Sigmoid transfer function, GD 

learning function, and LM training function. 
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Table 4. Sensitivity analysis of all parameters applied for ANN model. 

Transfer 

Function 

Learning 

Function 

Training 

Function 

Number of Neurons in Hidden Layer 

2 4 6 8 10 

TANSIG GDM 

LM 

94.5 95.06 95.73 95.45 97.45 

LOGSIG GDM 94.99 95.7 95.05 96.62 96.36 

TANSIG GD 94.21 95.12 95.61 97.01 97.08 

LOGSIG GD 94.57 95.33 95.71 97.08 96.94 

TANSIG GDM 

RP 

94.74 96.19 96.65 97.79 97.15 

LOGSIG GDM 94.56 95.81 95.49 97.27 97.01 

TANSIG GD 95.24 95.53 95.67 97.1 96.83 

LOGSIG GD 95.39 96.1 95.95 96.65 97.2 

TANSIG GDM 

SCG 

94.93 95.98 97.04 96.01 97.36 

LOGSIG GDM 95.17 95.61 96.8 95.46 97.39 

TANSIG GD 95.34 95.5 95.04 96.77 96.88 

LOGSIG GD 95.39 95.92 96.59 96.89 97.55 

TANSIG GDM 

BR 

95.41 96.55 94.65 97.07 97.29 

LOGSIG GDM 95.3 96.48 95.31 96.8 97.23 

TANSIG GD 95.26 96.48 96.68 94.92 97.25 

LOGSIG GD 95.39 96.02 96.65 96.59 97.19 

 
Fig. 6. 𝑅 correlation vs. number of neurons using different ANN training 

functions. 

4. Conclusions 

This article predicts nonlinear cutting transport efficiency 

using a neural network with multiple layers modelling. One 

hidden layer, two transfer functions (TANSIG and LOGSIG), 

four distinct training functions, and two to ten neurons for the 

hidden layer were all used in the analysis of the constructed ANN 

model. The model's accuracy increased as the number of neurons 

increased, according to the results. The GDM adaption learning 

function for the TANSIG transmission purpose generally 

outperforms the GD purpose. Results also indicate that the 

LOGSIG transfer function has subtly overperformed the results 

estimated by the TANSIG function at two and four neurons. 

Finally, we could conclude that using the TANSIG transfer 

function with the GDM adaption learning function generally 

performs better than the LOGSIG transfer function with higher 

numbers of neurons. Therefore, we suggested a novel predictive 

model the transport efficiency in wells.  
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