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ABSTRACT

ARTICLE INFO

Inadequate hole cleaning significantly impacts drilling operations. For example,
poor wellbore cleaning can result in various drilling issues, including a reduced
rate of penetration (ROP), early bit wear, and, in extreme situations, well loss
due to stuck pipe. Numerous studies have been carried out to comprehend how
to reduce transport efficiency and offer potential remedies for the issue. They
frequently provide empirical correlations based on experimental data. Many
engineering fields have recently adopted artificial intelligence and machine
learning. Consequently, oil and gas companies have increasingly used artificial
neural networks (ANN) to forecast a number of crucial metrics. The purpose of
this study is to use artificial intelligence approaches to forecast hole-cleaning
efficiency. Two layers, TANSIG and LOGSIG transfer functions, and several
training functions were used to construct feed-forward backpropagation ANN
models. A dataset of 1,620 experimental records served as the basis for the
investigation. Cutting density and pressure losses are included in the input
parameters. Additionally, the model input consisted of drilling characteristics
such as the drill pipe rotating speed (RPM), flow rate (GPM), pipe, and hole
inclination angle. The best-performing model was selected using a sensitivity
analysis using 2, 4, 6, and 10 neurons for each transfer function (LOGSIG and
TANSIG). With a correlation coefficient (R) greater than 0.9, the results showed
that the constructed model accurately predicted the cutting transport efficiency
(TE) in the wellbore. The findings demonstrated that as the number of neurons
increases, the model's accuracy in terms of R for training and testing also
increases. The expected and real TE utilizing the TANSIG transfer function, GDM
versus GD learning function, and four different training functions indicate that
using the GDM adaption learning function generally outperforms the GD
function. For instance, the correlation coefficient (R) for 10 neurons using the
GDM function was 97.45 compared to 97.08 for the GD function. Additionally,
results indicate that the LOGSIG transfer function a bit overperforms the results
estimated by the TANSIG function at two and four neurons. However, at higher
numbers of neurons, the TANSIG function performs better. Therefore, it is
recommended that using the TANSIG transfer function with the GDM be used for
future predictions of transport efficiency (TE).
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1. Introduction

Directional and horizontal wells have proven to be
effective field development techniques, satisfying the need for
enhanced oil recovery and reducing the overall cost of drilling
operations [1]. Cuttings generated during drilling are typically
removed from the wellbore using drilling mud. Flow rate
[2],[31,[4], fluid properties [5],[6], solid characteristics [7], and
the interactions between these parameters are the main factors
controlling cutting removal. For instance, Tomren et al. [2]
experimentally observed the forming of a cutting bed at low flow
rates for wellbore inclinations between 10° and 30°. In addition,
a higher tendency of cuttings build-up as wellbore inclination
increased. Cho et al. [3] and Ravi and Hemphill [8] reported that
the cutting height tends to be minimized by maximizing the flow
rate.

To date, downhole drilling technologies have advanced
significantly [9]. However, there has been limited research on
optimizing hydraulic settings and drilling operations. Therefore,
to increase drilling efficiency and reduce costs, the industry
needs innovative techniques and approaches to help rig-site staff
make decisions on drilling parameters in real-time [1],[11],[12].
It is common practice to plan new wells utilizing data from
existing wells in the area. Yet, this method remains traditional
and often fails to effectively replicate past experiences and data.
Additionally, the planned settings are frequently applied
throughout the bit run without considering the actual down-hole
conditions, which complicates the acquisition of comprehensive
and high-quality data [9].

It has recently been demonstrated in the petroleum
engineering sector that Artificial Neural Networks (ANNs) and
simulation are both very good tools for forecasting the behavior
of various aspects of petroleum design in the future
[13],[14],[15],[16],[17],[18],[19]. For instance, Ozbayoglu et al.
[20] completed the first artificial intelligence (AI) study on hole
cleaning in both horizontal and deviated wells. They used feed-
forward neural networks with a back-propagation learning
algorithm (BPNN) to examine the cutting bed height. Rooki et
al. [21] and Rooki and Rakhsh Khorshid [22] employed radial
basis neural networks (RBFN) and BPNN for hole-cleaning
prediction in foam drilling operations. They used experimental
data involving pressure and temperature conditions, foam
performance, foam velocity, eccentricity, and pipe rotational
speed (RPM) as input parameters, while the output parameter
was cutting concentration. Al-Azani et al. [23] concluded that
the cutting concentration in the wellbore can be accurately
predicted using a Supervised Vector Machine (SVM). However,
to date, no experimental examinations of hole cleaning during
drilling operations using Al approaches have been conducted. By
measuring cutting concentration in the wellbore, this work
attempts to create an ANN model that can be used to indirectly
predict the hole cleaning efficiency. Transport efficiency (TE) is
defined as the output parameter and five input parameters were
used as model input parameters during neural network training.
Ultimately, drilling engineers can utilize this prediction range to
detect issues and guide decision-making. The validated neural
network model can be used to accurately estimate hole cleaning
efficiency in real-time.
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2. Methodology: Data Description and Building
ANN Model

In this work, a transport efficiency prediction model is
developed using Artificial Intelligence (AI) tools. It is proposed
that an Artificial Neural Network (ANN) provides a nonlinear
function between inputs and output data for data processing and
complex system modeling. These technologies use artificial
neurons interconnected in a manner similar to biological neural
networks and are based on several processing methodologies
[24]. Typically, a multilayer neural network consists of input,
hidden, and output layers. Typically, one hidden layer is tried for
neural network model size optimization, as illustrated in Fig. 1.
An artificial neural network with two feed-forward
backpropagation network (BPNN) layers was used in this study.
Additionally, two transfer functions with varying quantities of
concealed neurons were used: the Log sigmoid and the
Hyperbolic Tanh. The architecture, training network, and data
preprocessing all have a significant impact on the network's
efficacy and dependability [15],[25]. As a result, three subsets of
the available data are optimally separated: training, validation,
and testing. The total data are subsets into 70, 15, and 15 percent,
respectively.

The information utilized to construct the Al models is
mentioned in Table 1. Over 1620 data points from experimental
activities were gathered and utilized as input data. These data
sets include inclination angle, particle density, flow rate, drill-
string rotational speed, and particle diameter. Additionally, data
were carefully filtered to eliminate redundant and noisy
information, which ensured the network was not affected by
anomalous hole-cleaning data. Choosing the right network size
is essential for maximizing simulation time [10],[25]. To
determine the optimal model design, a sensitivity analysis was
performed on the different parameters. Numerous attributes,
including the number of neurons, training and transfer functions,
and the number of hidden layers, were assessed to ascertain their
impact on the ANN model's accuracy. Sensitivity analyses were
implemented and evaluated using the correlation coefficient (R).
Additionally, the neural network that performs the best is the one
that most effectively fits the dataset.

Table 1. Transport efficiency vs. selected parameters input parameters for the
ANN model.
Input
Degree of inclination (°)
Particle density (ppg)
Flow rate (gpm)
Rotational per minute (RPM)
Particle diameter (in)

Output

Transport efficiency (TE)

3. Results and Discussion

This section examines the results obtained from the ANN
models developed to estimate transport efficiency using the
experimental values. Four distinct training functions were used
to construct a feed-forward backpropagation network. To
optimize the proposed ANN code, twelve primary scenarios
were created. The outcomes were evaluated to determine the
optimal model, using the parameters indicated in Table 2. For
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this investigation, four distinct learning functions-LM, RP, SCG,
and BR-were modified. There are two adaptation learning
functions used: LEARNGD and LEARNGDM. In addition, to
determine which ANN model was more effective in predicting
TE, the TANSIG and LOGSIG transfer functions were
implemented. We have checked the code running for every
chosen parameter, and the outcomes were compared by means
of the correlation coefficient (R) with the actual data.
Consequently, the optimal model parameter combination for
process optimization was identified and put into practice. The
data sets' training-to-testing and validation ratios were chosen to
be 70% and 30%, respectively. This indicates that 243 data
points were selected for each testing and validation procedure,
while 1134 data points were chosen for training.

Synaptic Weight > 0
=== Synaptic Weight < 0

TANSIG Transfer function

Fig. 1. The architecture of the ANN model that was constructed.

Figures 2-5 display the cross-plots for the ANN results for
the model training, testing, and validation procedures. In general,
the GDM adaptation learning function works better than the GD
function when comparing the outcomes of anticipated and real
TE utilizing the TANSIG transfer function, GDM versus GD
learning function, and LM training function (Fig. 2 and Fig. 3).
For example, the GDM function yields a correlation coefficient
(R) of 97.45 for 10 neurons, whereas the GD function yields a
correlation coefficient of 97.08. These results overperform the
results obtained by Azani et al. [23], in which the SVM model
yielded correlation coefficients between the measured and the
predicted values in the training and testing stages of 94% and
93%, respectively.

The results show that as the number of neurons increases,
the model's accuracy in terms of R for preparation and analysis
improves. For instance, when the number of neurons increased

Table 1. Parameters of the suggested model equations.
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from two to ten, the R values of actual and anticipated TE rose
from 94.50% to 97.45%. Conversely, Figs. 4 and 5 display the
various R values of the LOGSIG purpose for testing, training,
and validation; the optimal outcomes are achieved with ten
neurons. The GDM works better with a limited number of
neurons for the LOGSIG transfer function. This indicates that,
compared to the GD model, the tested ANN model with two and
four neurons had a greater value of R for the GDM. Using the
GD function, however, yields greater R values when the number
of neurons is increased to 6, 8, and 10 (see Table 3). For example,
using two neurons with GDM function yielded R values of
95.9%, 95.12%, and 93.42% for testing, training, and validation,
respectively. Using two neurons and the GD function, the
corresponding R values of actual and projected TE are 94.62%,
94.27%, and 95.54%. Therefore, we might suggest combining
the GD adaptation learning function with the LOGSIG transfer
function for improved prediction accuracy under certain
configurations.

Moreover, the results show that the LOGSIG transfer
function has somewhat outperformed the TANSIG function's
estimates of the outcomes at two and four neurons. However, the
TANSIG function works better when there are more neurons.
The correlation factor between several ANN models using
TANSIG and LOGSIG transfer functions, as well as the GD and
GDM adaptation learning functions, is illustrated in Fig. 6. In
conclusion, we might propose that the TANSIG transfer function
typically outperforms the LOGSIG transfer function with more
neurons when combined with the GDM adaptation function.
Table 3 provides a summary of the sensitivity analysis of every
parameter used with the ANN model. Sensitivity study
demonstrates that the training functions have little effect on the
constructed ANN model and, thus, on the TE prediction
performance in general. Thus, utilizing the TANSIG transfer on
in conjunction with the GDM adaptation function, we might
propose the following model for TE prediction:

TE,
N 2

= [Zizl Wzi (1 + e_Z(Wli,1d5+W1i,2Pc+W1i,39+W1i,4Q+W1i,5RP+b1i))

- 1] + b2 1)

(TEn + 1)(TEmaX - TEmin)
TEge-n = 2

The weights of the hidden and output layers are W1 and
W2, respectively; the number of neurons is N; the bias of the
layer is indicated by b; and the bias of the output layer is denoted
as b2. Error! Reference source not found. below shows the
values of the different parameters used in the above equations.

+ TEmin (2)

wl W2 bl b2
-0.161 0.2185 -0.5057 -1.238 -0.4264 -1.078 0.61619 0.1419
-20.198 0.12504 75.3855 15.0679 3.7924 -0.0892 41.3223 )
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Table 3. Implemented ANN model parameters

Training Learning Transfer Number of Neurons Number of Training, Testing,
Function Function Function in Hidden Layer Hidden Layer and Validation Ratio
GDM /GD Hyperbolic 2-10 1 70, 15, 15
tangent
Lm Logistic
GDM / GD 081st 2-10 1 70, 15, 15
sigmoid
GDM / GD Hyperbolic 2-10 I 70, 15, 15
tangent
RP Logistic
GDM / GD O8IST] 2-10 1 70,15, 15
sigmoid
GDM / GD Hyperbolic 2-10 1 70, 15, 15
tangent
SCG Logisti
GDM / GD OBISHIC 2-10 1 70,15, 15
sigmoid
GDM /GD Hyperbolic 2-10 1 70, 15, 15
BR tang.en.t
GDM /GD Logistic 2-10 1 70, 15, 15
sigmoid
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Fig. 2. Actual and anticipated TE utilizing the Tanh transfer function, GDM
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Table 4. Sensitivity analysis of all parameters applied for ANN model.

Kirkuk Journal of Engineering Science vol. 1: issue 1 (2025) 40-47

Transfer Learning Training Number of Neurons in Hidden Layer
Function Function Function 2 4 6 8 10
TANSIG GDM 94.5 95.06 95.73 95.45 97.45
LOGSIG GDM M 94.99 95.7 95.05 96.62 96.36
TANSIG GD 94.21 95.12 95.61 97.01 97.08
LOGSIG GD 94.57 95.33 95.71 97.08 96.94
TANSIG GDM 94.74 96.19 96.65 97.79 97.15
LOGSIG GDM RP 94.56 95.81 95.49 97.27 97.01
TANSIG GD 95.24 95.53 95.67 97.1 96.83
LOGSIG GD 95.39 96.1 95.95 96.65 97.2
TANSIG GDM 94.93 95.98 97.04 96.01 97.36
LOGSIG GDM 95.17 95.61 96.8 95.46 97.39
TANSIG GD 5¢aG 95.34 95.5 95.04 96.77 96.88
LOGSIG GD 95.39 95.92 96.59 96.89 97.55
TANSIG GDM 95.41 96.55 94.65 97.07 97.29
LOGSIG GDM 95.3 96.48 95.31 96.8 97.23
TANSIG GD BR 95.26 96.48 96.68 94.92 97.25
LOGSIG GD 95.39 96.02 96.65 96.59 97.19
099 1 numbers of neurons. Therefore, we suggested a novel predictive
s | model the transport efficiency in wells.
t 057 1 References
5 ose
3 [1] McDaniel B. Horizontal wells with multi-stage fracs
] provide better economics for many lower permeability
ot 2 . T ; r - reservoirs. in SPE Asia Pacific Oil and Gas Conference and
Number of Neurons In Hidden Layer Exhibition. Brisbane, Queensland, Australia, p. SPE—
o TANM.GDM B TANH.GD LoGCOM L0660 133427-MS, October 18-20, 2010, Doi: 10.2118/133427-

Fig. 6. R correlation vs. number of neurons using different ANN training
functions.

4. Conclusions

This article predicts nonlinear cutting transport efficiency
using a neural network with multiple layers modelling. One
hidden layer, two transfer functions (TANSIG and LOGSIG),
four distinct training functions, and two to ten neurons for the
hidden layer were all used in the analysis of the constructed ANN
model. The model's accuracy increased as the number of neurons
increased, according to the results. The GDM adaption learning
function for the TANSIG transmission purpose generally
outperforms the GD purpose. Results also indicate that the
LOGSIG transfer function has subtly overperformed the results
estimated by the TANSIG function at two and four neurons.
Finally, we could conclude that using the TANSIG transfer
function with the GDM adaption learning function generally
performs better than the LOGSIG transfer function with higher

MS

Tomren P.H., lyoho A.W., Azar J.J. Experimental study of
cuttings transport in directional wells. SPE Drilling
Engineering, Vol. 1(01): pp. 43-56, 1986.

Doi: 10.2118/12123-pa

Cho H., Shah S.N., Osisanya S.O. Effects of fluid flow in a
porous cuttings-bed on cuttings transport efficiency and
hydraulics. SPE Annual Technical Conference and
Exhibition? New Orleans, Louisiana, p. SPE-71374-MS,
September 30-October 3, 2001, Doi: 10.2118/71374-MS
Yu Y., Fang P., Zhang B., He Y., Li G.,, Xiao D.
Characteristics of cuttings migration with new cuttings
removal device in horizontal well. Geoenergy Science and
Engineering, Vol. 231(part A): pp. 212379, 2023. Doi:
10.1016/j.geoen.2023.212379

Igbal S.M., Hussain A., Ali N., Hussain W., Hussain H.,
Hussain S., et al. Experimental evaluation of different
influencing parameters on cutting transport performance
(CTP) in deviated wells. Geosystems and Geoenvironment,
Vol. 2(1): pp. 100110, 2023.

(2]

(4]

46


10.2118/133427-MS
10.2118/133427-MS
10.2118/12123-pa
10.2118/71374-MS
10.1016/j.geoen.2023.212379

Duraid Al-Bayati, Sahmee Eddwan Mohammed, Siver Aldaloo

[6]

(7]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[17]

Doi: 10.1016/j.ge0ge0.2022.100110

Mohammadsalehi M., Malekzadeh N. Optimization of hole
cleaning and cutting removal in vertical, deviated and
horizontal wells. SPE Asia Pacific Oil and Gas Conference
and Exhibition. Jakarta, Indonesia, p. SPE-143675-MS,
September 20-22, 2011, Doi: 10.2118/143675-MS

Ma L., Lai J., Zhang X., Wu Z., Tang L. Comprehensive
insight into cuttings motion characteristics in deviated and
horizontal wells considering various factors via CFD
simulation. Journal of Petroleum Science and Engineering,
Vol. 208: pp. 109490, 2022.

Doi: 10.1016/j.petrol.2021.109490

Hemphill T., Ravi K. Pipe rotation and hole cleaning in an
eccentric annulus. in SPE/IADC Drilling Conference and
Exhibition. Miami, Florida, USA, p. SPE-99150-MS,
February 21-23, 2006, Doi: 10.2118/99150-MS

Liu Q., Zhao J., Zhu H., Wang G., McLennan J.D. Review,
classification and structural analysis of downhole robots:
Core technology and prospects for application. Robotics
and Autonomous Systems, Vol. 115: pp. 104-120, 2019.
Doi: 10.1016/j.robot.2019.02.008

Wang Y., Salehi S. Application of real-time field data to
optimize drilling hydraulics using Neural Network
approach. Journal of Energy Resources Technology, Vol.
137(6), 2015. Doi: 10.1115/1.4030847

Robnett E., Heisig G., McGinley P., Macpherson J. Real-
time downhole drilling process data complement surface
data in drilling optimization. /JADC/SPE Asia Pacific
Drilling Technology Conference and Exhibition, Jakarta,
Indonesia, p. SPE-77248-MS, September 9-11, 2002, Doi:
10.2118/77248-MS

Gjelstad G., Hareland G., Nikolaisen K., Bratli R. The
method of reducing drilling costs more than 50 percent.
SPE/ISRM Rock Mechanics in Petroleum Engineering.
Trondheim, Norway, p. SPE-47342-MS, July 8-10, 1998,
Doi: 10.2118/47342-MS

Al-Rubaii M.M. A Newly developed drilling rate model
optimizes drilling efficiency using artificial intelligence.
International Petroleum Technology Conference. Dhahran,
Saudi Arabia, p. IPTC-24252-EA, February 12,2024, Doi:
10.2523/IPTC-24252-EA

Elkatatny S., Tariq Z., Mahmoud M., Al-AbdulJabbar A.
Optimization of rate of penetration using artificial
intelligent techniques. ARMA US Rock Mechanics/
Geomechanics Symposium. San Francisco, California,
USA, p. ARMA-2017-0429, June 25-28, 2017.
Chandrasekaran S., Kumar G.S. Drilling efficiency
improvement and rate of penetration optimization by
machine learning and data analytics. International Journal
of Mathematical, Engineering and Management Sciences,
Vol. 5(3): pp. 381-394, 2020.

Doi: 10.33889/IJIMEMS.2020.5.3.032

Solanki P., Baldaniya D., Jogani D., Chaudhary B., Shah
M., Kshirsagar A. Artificial intelligence: New age of
transformation in petroleum upstream. Petroleum
Research, Vol. 7(1): pp. 106—114, 2022.

Doi: 10.1016/].ptlrs.2021.07.002

Pandey Y.N., Rastogi A., Kainkaryam S., Bhattacharya S.,
Saputelli L. Machine learning in the oil and gas industry.

Kirkuk Journal of Engineering Science vol. 1: issue 1 (2025) 40-47

[19]

[21]

[22]

(23]

[24]

[25]

Mach Learning in Oil Gas Industry, New York, USA:
Springer, 2020.

Tariq Z., Aljawad M.S., Hasan A., Murtaza M.,
Mohammed E., El-Husseiny A., et al. A systematic review
of data science and machine learning applications to the oil
and gas industry. Journal of Petroleum Exploration and
Production Technology,Vol. 11(12): pp. 4339—4374,2021.
Doi: 10.1007/s13202-021-01302-2

Choubey S., Karmakar G. Artificial intelligence techniques
and their application in oil and gas industry. Artificial
Intelligence Review, Vol. 54(5): pp. 3665-3683, 2021. Doi:
10.1007/s10462-020-09935-1

Ozbayoglu E.M., Miska S.Z., Reed T., Takach N. Analysis
of bed height in horizontal and highly-inclined wellbores
by using artificial neural networks. in SPE International
Thermal Operations and Heavy Oil Symposium. Calgary,
Alberta, Canada, p. SPE-78939-MS, November 4-7, 2002,
Doi: 10.2118/78939-MS

Rooki R., Ardejani F.D., Moradzadeh A. Hole cleaning
prediction in foam drilling using artificial neural network
and multiple linear regression. Geomaterials, Vol. 4(1): pp.
47-53,2014. Doi: 10.4236/gm.2014.41005

Rooki R., Rakhshkhorshid M. Cuttings transport modeling
in underbalanced oil drilling operation using radial basis
neural network. Egyptian Journal of Petroleum, Vol. 26(2):
pp- 541-546,2017. Doi: 10.1016/j.ejpe.2016.08.001
Al-Azani K., Elkatatny S., Abdulraheem A., Mahmoud M.,
Ali A. Prediction of cutting concentration in horizontal and
deviated wells using support vector machine. in SPE
Kingdom of Saudi Arabia annual technical symposium and
exhibition. Dammam, Saudi Arabia, p. SPE-192193-MS,
April 23-26, 2018, Doi: 10.2118/192193-MS

Shi X., Liu G., Gong X., Zhang J., Wang J., Zhang H. An
Efficient Approach for Real-Time Prediction of Rate of
Penetration in Offshore Drilling. Mathematical Problems
in Engineering, Vol. 2016(1): pp. 3575380, 2016. Doi:
https://doi.org/10.1155/2016/3575380

Mohammed S.E., Al-Bayati D., Tawfeeq Y.J. A New
Model for Predicting surface pump pressure of drilling rig
using Artificial Neural Network. Petroleum Chemistry,
Vol. 64(7): pp. 747-755, 2024. Doi:
10.1134/S0965544124050141

47


10.1016/j.geogeo.2022.100110
10.2118/143675-MS
10.1016/j.petrol.2021.109490
10.2118/99150-MS
10.1016/j.robot.2019.02.008
10.1115/1.4030847
10.2118/77248-MS
10.2118/47342-MS
10.2523/IPTC-24252-EA
10.33889/IJMEMS.2020.5.3.032
10.1016/j.ptlrs.2021.07.002
10.1007/s13202-021-01302-2
10.1007/s10462-020-09935-1
10.2118/78939-MS
10.4236/gm.2014.41005
10.1016/j.ejpe.2016.08.001
10.2118/192193-MS

