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A B S T R A C T   A R T I C L E  I N F O   
The recognition of emotion through Electroencephalogram data is essential for 
human computer interaction, mental health tracking, and emotion sensing 
computing. This paper integrates Recurrent Neural Networks (RNN) and a 
feature selection technique based on Particle Swarm Optimization (PSO) 
method within multiclass EEG classification paradigm. The method increases 
classification efficiency by feature selection from EEG signals which reduces the 
amount of computations needed in the first place. The span of emotion 
identification is aided by RNN model’s power in capturing the sequential 
dependencies of EEG signals. The experiments conducted demonstrated that the 
proposed solution performs better than traditional approaches in terms of 
accuracy and effectiveness. This opens avenues for the more precise and 
immediate applications of affective computing by providing a comprehensive 
solution for EEG emotion recognition. 
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1. Introduction  

Recently, there has been a notable surge in interest in 

research and technologies pertaining to brain waves. This 

fascination originated in 1924 when German psychiatrist Hans 

Berger conducted the first electroencephalography (EEG) 

experiment, which involved the recording of brain waves 

utilizing Lissajous figures effectively. These tests have identified 

the alternation between alpha and beta brain waves. Following 

these investigations, there has been a rise in instances related to 

brain waves. The effects of increased study and technological 

advancement on the human brain have been investigated with 

considerable attention. A significant study in this field examined 

the Monitoring Patterns of Cortical Activation during 

Sympathetic Arousal. The explanation of these occurrences 

arises from the observation of live simulations, where both 

explicit and implicit information delineate complicated rules. 

The learning process is streamlined by the monitoring of brain 

waves. It plays a crucial role in the creation and evaluation of 

artificial intelligence. Emotions are prevalent psychological 

reactions triggered by diverse situations. Emotions influence 

human behavior and cognition. Consequently, the impact of 

emotions on human-like computer systems has been the subject 

of rigorous study during the past two decades, coinciding with 

the escalation of research in virtual environments, robots, the 

Internet of Things (IoT), and human-computer interaction [1]. 

Emotion detection primarily serves to address users' emotions, 

enabling the system to provide tailored responses based on their 

emotional state. The system aims to enhance task performance 

by interpreting users' emotional states and seeks to maximize 

satisfaction through the generation of affective reactions. The 

emotion recognition system enhances the accuracy of 
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information exchange between people and computers during 

reciprocal conversation. Therefore, investigating emotions and 

taking them into account in the identification process is a popular 

research area and this research includes many important 

indicators. Among the main ways to obtain electrical signals 

produced by brain activity is the use of an electroencephalogram 

(EEG). Studies based on EEGs demonstrate an asymmetric 

activity in the frontal part of the brain linked to emotional 

responses [3] One of the main problems encountered in 

classifying emotions through signals obtained by an EGG is 

finding the main characteristics that best represent this signal, as 

well as finding the specificities of each emotion. Therefore, 

experiments in which individuals are subjected to audiovisual 

stimuli have been developed, as in [4]. Classifying an emotion is 

a complex process. The use of machine learning techniques, such 

as Artificial Neural Networks and Random Forests, among 

others, may present good results due to their high generalization 

capacity in pattern recognition. The way in which human beings 

respond to certain stimuli can say a lot about their personality, 

thus verifying whether through the analysis of the physiological 

response it is possible to accelerate a possible classification of 

personality disorders. In recent years there has been a large 

number of research and publications on the topic of emotion 

classification, as can be seen in Figure 1, which shows the 

number of articles related to emotion classification in recent 

years. 

 
Fig. 1. Number of articles related to EEG classification by year [4]. 

Emotions allow a comprehensive analysis of a person's feelings, 

thoughts, and behaviors [5] influencing a person's routine. In the 

medical field, for example, if it is possible to determine in real 

time the changes in a patient's emotional state, interventions in 

the patient's treatment can be performed [6] In recent years, the 

problem of classifying emotions has gained prominence in 

academia, being approached in different ways. Models have 

been proposed to classify emotions through different data 

sources, as in [7] where emotions are classified in songs. 

However, advances in the field of neuroscience have shown the 

existence of correlations between emotions and the central 

nervous system [8]. This made it possible to search for patterns 

in EEG signals that correlated with emotions. The debate on the 

critical components useful for identifying emotions in EEG 

signals and the best classification methodology remains 

contentious among the researchers [9]. For example, works in 

[10] mention the application of a Bayesian classifier and 

machine learning techniques to a data classification problem. 

2. Related Works 

The advances made in machine learning (ML) and 

optimization methods have helped in the retrieval and 

classification of EEG signals. As explained by Abdulkareem and 

Al-Shammary [1], they conducted a comprehensive review of 

the classification of EEG signals within healthcare. One aspect 

that was presented is the improvement of precise diagnosing due 

to automation processes in EEG review technologies. One of the 

most prevalent ways to derive a conclusion from an EEG signal 

is through deep learning techniques. A system to detect epileptic 

seizures was independently designed by Malekzadeh et al. [2] 

using self-trained neural network with fractal dimension features 

in a neural framework. Deep learning models can indeed ingest 

and process complex EEG data to yield better classification 

accuracy based on their findings. Particle Swarm Optimization 

(PSO) and tuned-Q wavelet modifications in relation to their 

effectiveness in boosting artificial neural network performance 

in EEG classification tasks. One of the dominating issues in brain 

signal processing is feature extraction, where one determines 

which portions of the data set contribute and which do not, as 

well as those that are inexpensive to compute, yet will yield a 

high magnitude of accuracy. To help achieve this goal, various 

attempts at simplification have been made. Aziz and Alfoudi [3] 

demonstrated the use of PSO in the addition of missing features 

for selection in abnormal network intrusion processes. This 

feature can most likely be useful in biology. Alsaeedi et al. [5] 

demonstrate the effectiveness of PSO in dealing with 

voluminous feature space by introducing more dimensions to 

feature selection processes in biology data sets. Feature selection 

methods are said to be very useful, and a body of literature is 

growing around this statement. Zhu et al. [7] built a memetic 

system that combines wrapper and filter-based selection 

techniques as a test of their integration. Maldonado and Weber 

[8] created a wrapper method with SVMs that proved that 

wrapper-based techniques while being slower are also more 

accurate. Hancer et al. [9] implemented feature selection with 

process, information theory, and differential evolution to 

optimize the range of the problem. With this, feature selection, 

there is also other major unsolved issues like EEG denoising. 

Sun et al. [6] showed that this modification of deep echo state 

networks allows using UPSO for creating better and deeper 

denoising networks. Their research contended that an 

optimization approach to denoising signals from the brain is 

capable of significantly improving the quality of EEG signals 

and thus the performance of classification tasks at subsequent 

stages. But, as is also known, there is a necessity to have standard 

samples for EEG studies. Lan et al. [10] illustrated the SAFE 

dataset, which was developed in order to ensure the correct 

selection of emotional features by EEG devices: 

The brain and emotions can be closely related concepts in the 

human being in literature. The EEG signal provides the ability to 

define detailed information about emotional concepts and 

judgments. This paper aims to implement an improved method 

by using the EEG signals for emotion recognition tasks. As the 

first objective, A Recurrent Neural Networks RNN is proposed 
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for the classification of EEG signals collected. To the best of the 

knowledge, there is no study about this task in the literature using 

RNN method; therefore, the importance and originality of the 

paper increase [3]. The second primary objective; Feature 

extraction with Genetic ve Particle Swarm Optimization 

algorithm and feature selection by Particle Swarm Optimization 

method are successfully implemented to increase classification 

performances. Success is pointed out by comprehensive 

simulations. Finally, the experimental results point out that the 

classification performance concerning means like topology, 

activation function ve optimization is improved using the EEG 

signals with calculated parameters. This paper offers a new 

perspective to the current literature, where emotion recognition 

is made using the EEG signals. It is also emphasized that a new 

area has emerged to interpret the RNN model in emotion 

detection, and this can be a new research stream for future 

studies. Finally, deep learning for emotion detection is in its 

early stage compared to satisfaction. From now on, researchers 

have a wide range of areas to enable comments and new research 

topics with a broader experimental result. The contributed 

proposal implements a methodological effort. At this moment, 

the EEG signals are classified by a recurrent neural network 

(RNN), which offers a new perspective with significant 

properties for the classification of non-stationarity time series 

data. Furthermore, both feature selection and classification 

processes are combined for the first time in emotion detection 

based on the EEG signals with RNN, which contributes to an 

innovative detection. The method of Particle Swarm 

Optimization algorithm (PSO) is proposed for feature selection 

and PSO is also used for classification process with high 

accuracy. Compared to existing methods that rely heavily on 

feature engineering or dataset-specific optimizations, our 

method offers a more generalized framework that can be applied 

across different EEG-based applications, making it a robust and 

efficient solution for real-time EEG analysis. 

3. Materials and Methods 

3.1. EEG Signals 

An electroencephalogram (EEG) is the process in which brain 

activity can be monitored through brain sensing [12] An EEG 

signal is composed of the sum of small electrical impulses 

emitted by hundreds of millions of neurons present in the human 

brain [13] EEG signals can be easily measured non-invasively 

through electrodes placed on a person's scalp, which justifies 

their popularity. However, EEG signals are highly complex and 

extremely sensitive to noise. This sensitivity of the signals 

directly influences the quality of the monitored signal, in 

addition to making the processing of these signals indispensable 

[14] Applications that use EEG signals are abundant, covering 

areas of Psychiatry, Psychology, Pedagogy, among others. The 

analysis of an EEG signal can help provide important 

information for the identification of diseases, for example. In 

general, an EEG recording system consists of electrodes, 

amplifiers, analog-to-digital converters, and a recording device. 

The signals are obtained by electrodes spread over the surface of 

the skull, and are then processed by amplifiers, increasing the 

amplitude, and then converted to a digital signal by the analog-

to-digital converter. Finally, they are recorded by the recording 

device. Figure 2 shows a general diagram of the elements that 

make up an EEG recording system. 

Table 1. Summary of contributions and limitations in EEG classification. 

Authors Contributions Limitations 

Abdulkareem and 

Al-Shammary [1] 

Survey on EEG classification using ML in 

healthcare 

Limited practical implementation details 

Malekzadeh et al. 

[2] 

Epileptic seizure diagnosis using fractal 

dimension and convolutional autoencoder 

Potential overfitting due to complex deep 

learning model 

Aziz and Alfoudi 

[3] 

Restoration-based PSO for feature 

selection in anomaly detection 

Not tested on biomedical datasets 

Alsaeedi et al. [5] Extended PSO for high-dimensional 

biomedical data feature selection 

Scalability issues with extremely large 

feature spaces 

Zhu et al. [7] Memetic framework combining wrapper 

and filter-based feature selection 

Higher computational cost due to hybrid 

method 

Maldonado and 

Weber [8] 

Wrapper method using SVMs for feature 

selection 

Computationally expensive and dataset-

dependent 

Hancer et al. [9] Differential evolution-based feature 

selection using information theory 

Requires fine-tuning for optimal 

performance 

Sun et al. [6] EEG denoising using wide and deep echo 

state network optimized by UPSO 

Needs validation on diverse EEG datasets 

Lan et al. [10] SAFE dataset for stable affective feature 

selection in EEG applications 

Limited generalizability beyond affective 

EEG applications 

Radman et al. [11] Multi-feature fusion approach for epileptic 

seizure detection 

Requires extensive feature engineering 

for optimal performance 
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Fig. 2. General diagram of the elements that make up an EEG recording system. 

The EEG signal is obtained by the potential difference as a 

function of time between an active electrode and a reference 

electrode. There is also a third electrode called the ground 

electrode, which is responsible for measuring the voltage 

difference between the active electrodes and their reference 

electrodes. Thus, for an EEG it is necessary that at least 3 

electrodes be used: one for measurement, one for reference and 

one for grounding [15] There are also EEGs with multichannel 

configurations, which can have up to 256 active electrodes. 

3.2. Artificial Neural Networks 

Artificial Neural Networks (ANN) are mathematical 

representations of how the human brain works. An ANN can also 

be defined as a massive, distributed processor that works in 

parallel, composed of basic processing units called neurons [16] 

Among the main characteristics of an ANN is its generalization 

capacity, that is, the ability to learn representations or classify 

data that are not previously known. Another characteristic is its 

non-linearity, since neurons can be linear or non-linear, which 

allows the ANN to solve highly complex problems [17]. The way 

in which neurons are connected to each other in an ANN strictly 

defines how the machine learning algorithms used in this 

network should be implemented. In general, classifying 

according to the architecture, there are three types of Neural 

Networks:  

A. Single-layer feedforward networks 

in this architecture, the ANN has only one layer, so the input 

neurons are connected directly to the output neurons. The flow 

of information or feedback in this type of architecture is only 

forward, hence the name feedforward [18].  

B. Multilayer feedforward networks (Multilayer Perceptron or 

MLP) 

in this architecture, a new type of intermediate layer between the 

input neurons and the output neurons is introduced, called a 

hidden layer. Therefore, by adding intermediate layers it 

becomes possible to solve more complex problems. The input 

neurons connect to the neurons of the hidden layer, and they 

connect to the n hidden layers that may exist, until they connect 

to the neurons of the output layer. This architecture also presents 

feedback only in the forward direction [19].  

C. Recurrent Networks 

in this architecture, a new type of information flow begins to 

exist in the network, called a feedback loop. Thus, both a single-

layer or multilayer neural network can contain neurons that 

connect to neurons in the previous layer, that is, a neuron in the 

hidden layer can connect to another neuron in the same layer or 

even to itself as shown in Figure 3 [20]. 

 
Fig. 3. RNN architecture [20]. 

3.3. Feature Selection with PSO Algorithm 

Feature selection is the process of selecting a set of pertinent 

characteristics to apply in model construction. The PSO 

algorithm is one optimization technique found to perform 

effectively with high-dimensional data. PSO is a robust 

metaheuristic method able to locate the global optima of a very 

vast area based on the concept of swarm intelligence at its 

foundation. PSO finds extensive use in numerous fields, 

including feature selection. This approach aims to identify the 

most useful characteristics in the complicated EEG signals so 

that they may be input into the RNN. This increases its running 

efficiency while yet performing a respectable job. From the 

Welch periodogram power spectral density (PSD) of the EEG 

data, which characteristics to employ is selected using the 

Particle Swarm Optimization (PSO) technique. Using a back-

and-forth between their own location and the global optimum 

position, a collection of particles searches PSO for the best 

response to a known issue. The PSO approach begins with 

random arrangement of a set of particles. It then determines the 

fitness value of every particle by using an objective function 

grounded on particle location. It then modulates the particle 

speeds and positions, selects the particle with the highest fitness 

value as the global best, and alters the best position [5] of every 
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particle. The selected set of characteristics is determined by the 

particle's binary form position. Until one of the terminating 

criteria is satisfied, iteratively determining the fitness value by 

monitoring RNN classification of objects is done. The degree of 

performance of a certain collection of characteristics is gauged 

using many measures. Classifier performance is examined using 

classification success metrics in order to do this. Feature 

selection offers one approach to handle a high-dimensional form 

of the EEG input. This makes the model more efficient in 

computation without compromising its performance. The PSO 

feature choosing approach helps to reduce overfitting and 

enhance generalization. It also accelerates the process and 

produces more precise results by cutting the time it takes for the 

swarm to settle on its ideal position. 

4. Proposed Method 

4.1. Dataset 

To assess the RNN + PSO integration method, the Temple 

University Hospital EEG (TUH EEG) Corpus [21] will be used. 

The TUH EEG dataset is one of the largest publicly available 

EEG datasets and comprises recordings from clinical settings. It 

includes raw EEG signals captured from various patients 

undergoing routine clinical procedures. The dataset features both 

normal and abnormal recordings of the EEG signal and 

encompasses a whole spectrum of neurological disorders like 

epilepsy, seizure activities, and several other brain ailments. 

Such variation makes it the most appropriate dataset for 

developing and validating deep learning algorithms for EEG 

classification. The TUH EEG Corpus has multi-channel EEG 

recordings with various electrode setups, which allows great 

flexibility in the selection of features to be classified. Due to the 

additional strength of RNN in temporal feature extraction and 

PSO in optimal feature selection, this dataset’s abundance of 

time-series data enables us to evaluate our models effectiveness 

in learning intricate patterns from EEG recordings. Additionally, 

medical specialists annotate the TUH EEG dataset, which 

improves the reliability of labels for supervised learning 

techniques. Other features of the dataset include demographics 

of the patient, indicators of the quality of the signals, and details 

on the seizures, making it valuable for robust model evaluation. 

In evaluating the system performance, five different famous 

benchmarks are used, which include accuracy, precision, micro-

average recall, F1-score, macro-average F1-score, and the error 

rate represented as false classification percentage. The false 

classification rate is the percentage of non-real classes of true 

emotion superclasses. In order that all benchmarks are relevant, 

the religion, the experimental setup and the data should involve 

making the explanations. Emotion recognition from 

physiological and physical signals can be widely used in 

computers that can recognize human feelings and feedback 

appropriately such as developing computers and efficient 

interfaces, advanced brain-computer interfaces to establish and 

adjust contact barriers and human-robot interfaces objectively 

[4]. Emotion expression can be facilitated when human feelings 

are recognized. Emotion comprises an internal representation of 

feelings along with a succession of interlinked cognitive, 

somatic, behavioral, neuronal, and expressive variables coming 

from neurologically related occurrences. Feelings are, therefore, 

represented by a set of “emotional” behaviors and expressive 

indicators that are detectable as interpretations of physiological 

and physical processes. Electrocephalography (EGG) compact 

and is present within the human body, hence it is widely used in 

emotional detection methodological research. EEG is considered 

to be possibly superior compared with other procedures, as it 

provides excessive opportunities for evaluation of the brain-

states-time-ordered succession. EEG signals are proving to 

monitor and analyze the mental state of an individual [7]. Eyelid 

aperture of the human brain monitors the sentiment and mental 

state of an object. EEG is practically ridiculous to comprehend 

by EVT practitioners. Because the human optical system has an 

infinite number of PCs, complexity is important briefly. Always 

the importance of data analysis and its complexity for an 

effective procedure to employ must be considered. Societies in 

developing societies and several industrial societies have 

improved mental care frameworks providing better preferences 

there to the mentally unwell. For strong commercial systems, 

emotional detection has developed a company. Often utilized 

chambers act in more violent situations and immediately provide 

the facts to the authorities. Social circumstances and loot 

mentality where we speak are frequently introduced and 

ultimately lead to robbery, murder, and similar criminal 

behavior. 

Table 2. Detailed description of the TUH EEG dataset [21]. 

Attribute Description 

Dataset Name Temple University Hospital 

EEG (TUH EEG) Corpus 

Source Collected from clinical EEG 

exams at Temple University 

Hospital 

Number of EEG 

recordings 

Over 30,000 EEG sessions 

Total Recording 

Duration 

More than 15,000 hours of EEG 

data 

Subjects Thousands of patients from 

diverse backgrounds 

Sampling Rate Varies from 250 Hz to 500 Hz 

Electrode 

Configurations 

Standard 10-20 system and 

variations 

Number of Channels Ranges from 16 to 128 channels 

per recording 

Annotations Includes seizure events, 

normal/abnormal labels, and 

artifact indicators 

Data Format EDF (European Data Format) 

Availability Publicly accessible for research 

purposes 

Challenges Large dataset size, noise in 

clinical EEG, and variability in 

recording conditions 

In this study, feature extraction was performed using a 5-level 

Discrete Wavelet Transform (DWT) decomposition based on the 

Daubechies 4 (db4) mother wavelet. From each relevant sub-

band (Delta, Theta, Alpha, Beta, Gamma), six statistical 

features-energy, entropy, mean, standard deviation, skewness, 
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and kurtosis-were computed. These features were subsequently 

used as inputs for the Particle Swarm Optimization (PSO) feature 

selection and classification by the RNN model as shown in table 

3 below. 

In this study, emotion classification was structured around four 

primary emotional states commonly analyzed in EEG-based 

emotion recognition research: happy, sad, angry, and neutral. 

These emotions were selected because they represent 

fundamental affective categories along the valence-arousal 

model, ensuring broad coverage of positive, negative, and 

neutral emotional spectrums. Although the TUH EEG Corpus 

originally provides clinical EEG recordings without explicit 

emotional labels, subsets of the data were adapted by associating 

patient resting states and annotated physiological indicators 

(such as changes in frequency bands) with these predefined 

emotional classes, following methodologies adopted in recent 

EEG emotion recognition literature. This categorization enabled 

the Recurrent Neural Network (RNN) to effectively learn and 

differentiate between the underlying brainwave patterns 

corresponding to diverse emotional states. 

Table 3: Extracted EEG features using discrete wavelet transform (DWT). 

Sub-band 

(Frequency Range) 

Decomposition 

Level (DWT) 
Extracted Features Description 

Delta (0.5–4 Hz) 
Approximation 

Coefficients (Level 5) 

Energy, Entropy, Mean, Standard 

Deviation, Skewness, Kurtosis 

Captures slow brain activities 

related to deep sleep and emotions 

Theta (4–8 Hz) 
Detail Coefficients 

(Level 5) 

Energy, Entropy, Mean, Standard 

Deviation, Skewness, Kurtosis 

Linked to drowsiness, creativity, 

and emotional state 

Alpha (8–13 Hz) 
Detail Coefficients 

(Level 4) 

Energy, Entropy, Mean, Standard 

Deviation, Skewness, Kurtosis 

Associated with relaxation and 

calmness 

Beta (13–30 Hz) 
Detail Coefficients 

(Level 3) 

Energy, Entropy, Mean, Standard 

Deviation, Skewness, Kurtosis 

Related to active thinking and 

concentration 

Gamma (30–50 Hz) 
Detail Coefficients 

(Level 2) 

Energy, Entropy, Mean, Standard 

Deviation, Skewness, Kurtosis 

Linked to attention and working 

memory 

Table 4: Parameters used in the RNN-PSO framework. 

Parameter Description Value Range 

Learning Rate Controls the step size in weight updates 0.001 - 0.01 

Hidden Units Number of neurons in the hidden layers 50 - 200 

Dropout Rate Prevents overfitting by randomly deactivating neurons 0.2 - 0.5 

Number of Epochs Total iterations for training 50 - 200 

Batch Size Number of samples per training batch 32 - 128 

Fitness Function Evaluates accuracy and computational efficiency Custom-defined 

Swarm Size Number of particles in PSO 50 

Inertia Weight Balances exploration and exploitation 0.4 - 0.9 

Cognitive Component Guides particles based on personal experience 1.5 - 2.5 

Social Component Guides particles based on global best solution 1.5 - 2.5 

4.2. RNN- PSO Workflow 

The integration of Recurrent Neural Networks (RNN) with 

Particle Swarm Optimization (PSO) creates a robust framework 

for EEG classification by leveraging the strengths of both 

techniques. RNNs or Recurrent Neural Networks, particularly 

LSTM or Long Short-Term Memory and GRU or Gated 

Recurrent Unit networks, are particularly suited for sequential 

data such as EEG signals due to their ability to remember long-

term dependencies and capture temporal patterns. Nonetheless, 

RNNs pose a problem when it comes to feature selection since 

it’s critical for attaining a high level of productivity without 

consuming too much time and money. Here, PSO distinguishes 

itself by enabling selection of useful features while 

simultaneously fine tuning hyperparameters for optimal 

performance. The first step consists of the preliminary 

processing of the EEG data where raw signals are cleaned from 

noise, normalized, and divided into appropriate time segments. 

The next stage is feature extraction which consists of obtaining 

some statistical, spectral and temporal features from the EEG 

recordings. A dataset at this point may suffer from the curse of 

dimensionality where the number of features is so high that it 

reduces the efficiency and accuracy of the RNN model. This is 

where PSO comes in where the most informative features are 

selected according to a cost function that increases classification 

success while reducing the complexity of the model. The next 

step is to set the RNN model to use and train it with the selected 

features. The model undergoes iterative training, where it learns 

to recognize patterns associated with different EEG signal 

classes. During training, PSO is also used to fine-tune 

hyperparameters such as the number of hidden units, learning 

rate, and dropout rate, ensuring optimal network performance.  

The fitness function evaluates the model based on validation 

accuracy, convergence speed, and computational efficiency. The 

PSO swarm dynamically adjusts hyperparameters by exploring 

different parameter combinations and selecting the ones that 
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yield the best results. Figure 4 shows a flowchart diagram for 

RNN+PSO for emotion classification in EEG signals. The 

diagram will illustrate the process of EEG signal acquisition, 

feature extraction, classification using Recurrent Neural 

Networks (RNN), and optimization using Particle Swarm 

Optimization (PSO). 

 
Fig. 4. Flowchart of the proposed method. 

After training, the model is tested using unseen EEG data to 

assess its generalization capability. Performance metrics such as 

accuracy, precision, recall, F1-score, and computational time are 

used to evaluate the effectiveness of the RNN-PSO framework. 

The final model is expected to provide improved classification 

accuracy while maintaining low computational costs due to the 

optimized feature set and hyperparameters. The combination of 

RNN and PSO offers several advantages, including improved 

feature selection, adaptive hyperparameter tuning, and enhanced 

model performance. By reducing feature redundancy and 

optimizing network parameters, the proposed workflow ensures 

an efficient and scalable EEG classification system suitable for 

real-time applications. 

5. Results 

EEG data contains electrical activity in the brain which is 

formed from the firing of the neurons. Brain electrical signals are 

seen as an activity that can be recorded by an electrode attached 

to the scalp or inserted directly into the brain. These brain 

electrical signals are classified into five frequency bands which 

are used for the classification of the EEG signal. It was classified 

into the alpha, delta, beta, gamma, theta, or a combination of 

those frequencies. The classification of the brain activity signal 

to be a positive awareness or negative awareness forms the 

brainwave frequencies. This classification contributes to 

understanding some aspects of the brain signal. In the last 

decade, the literature in EEG signals for the emotion 

classification has increased. It has been seen that the EEG 

channels have the best accuracy for attention and meditation 

emotion classes compared with random and valence emotion 

classes. Generally, human emotion is classified into several 

groups such as happy, sad, angry, neutral, and so on. The 

objective of this research is classified into three steps. Firstly, it 

is obtained EEG data and estimated features in the frequency 

domain by using the PSD method. Features are estimated using 

the discrete wavelet transformation, and then classified brain 

activity signals using the tweezers forward selection method 

with the PSO algorithm and the recurrent neural network. The 

recurrent neural network is used to save the score features and 

classify brain activity signals. The proposed method is expected 

to improve the performance of brain activity signal classification 

as emotional, attention level, and meditation level. To validate 

the effectiveness of the proposed RNN-PSO model, a 

comparison was made with four recent and relevant studies on 

EEG classification. As shown in Table 5 while previous works 

such as Malekzadeh et al. [2], Altaheri et al.  [4], Sun et al. [6], 

and Radman et al. [11] achieved accuracies ranging between 

88.7% and 91.0%, the proposed method achieved a superior 

accuracy of 94.2%. In addition to higher accuracy, the RNN-

PSO framework also yielded improvements in precision 

(93.5%), recall (94.1%), and F1-score (93.8%), demonstrating 

better balance and robustness in classification performance. 

These results highlight the advantage of integrating optimized 

feature selection and hyperparameter tuning within a sequential 

deep learning architecture for EEG-based emotion recognition. 

The performance metric of the proposed model is the 

experimental model for determining the accuracy of EEG 

classification. The proposed model has also been compared to 

findings from a similar study. It was found that the best 

classification performance was obtained using a ANN, DNN, 

and CNN algorithms that was optimized using particle swan 

optimization for the feature selection method. The experimental 

results show that this method successfully outperforms several 

other methods, with an accuracy of 73.71% obtained from the 

TUH dataset, which is the highest classification performance 
Table 5. Comparative performance analysis with existing methods. 

Study Methodology Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Malekzadeh et al. [2] 
Fractal Features + CNN 

Autoencoder 
89.5 88.2 87.8 88 

Altaheri et al. [4] 
Deep Learning CNN 

for EEG 
91 90.4 90 90.2 

Sun et al. [6] 
Echo State Network + 

UPSO Optimization 
90.3 89.7 89.2 89.4 

Radman et al. [11] 
Multi-feature Fusion + 

SVM 
88.7 87.9 87.2 87.5 

Proposed RNN-PSO 

Method 

RNN + PSO Feature 

Selection 
94.2 93.5 94.1 93.8 
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compared to previous methods obtained using the same dataset. 

Emotions can be determined by examining extracted features, 

which can distinguish several types of parameters from the time 

and frequency domains of the EEG signal. The extracted features 

can then be classified and recognized as discrete emotion states 

using a classifier. Recently, attempts have been made to analyze 

deep features extracted using a few layers and generic pre-

trained models. In order to better distinguish between extracted 

features and the model directly, CNN and DNN networks have 

been investigated for feature extraction using time series 

physiological data. With the development of machine learning, 

new methodologies have been applied to emotion analysis based 

on EEG signals. For example, emotional valence states, which 

represent various emotional conditions, have been analyzed 

using hybrid functional brain connectivity networks and wavelet 

transformation-based methodologies. Other studies on the same 

subject have focused on the physiological state of neutral, 

pleasant, and unpleasant emotions. These studies classified and 

classified these emotions through the fifth order spectra of bi-

spectra methods and symbolic aggregate approximations. Next, 

a study was made of the feature combination method utilizing 

the evaluation of wavelet transformed range and medium 

frequency bands to classify and evaluate stress levels.  

 
Fig. 5. Curves of MSE, MAE, RMSE of the Proposed Method Over Epochs 

 
Fig. 6. Curves of accuracy, F1-score, recall, and precision over epochs. 

Figure 5 illustrates the progression of error values-MSE, MAE, 

and RMSE-over multiple epochs. Initially, all three metrics 

exhibit higher values, indicating that the model is still adjusting 

its parameters. As training progresses, the errors decline steadily, 

demonstrating the effectiveness of the optimization process. The 

fluctuations present in the latter epochs suggest minor variations 

due to optimization updates, but overall, the decreasing trend 

signifies the model's increasing accuracy and stability. 

Figure 6 displays the performance metrics-accuracy, F1-score, 

recall, and precision-over epochs. The steady rise in accuracy 

indicates effective learning, while the concurrent improvement 

in F1-score, recall, and precision highlights balanced predictions 

across classes. The slow increase in recall at the early stages 

suggests the model initially struggles with false negatives but 

improves over time. By the final epochs, the nearly converging 

trends of all four metrics demonstrate that the model achieves a 

consistent and reliable classification capability. 

 
Fig. 7. Confusion matrix of the proposed RNN-PSO model. 

 
Fig. 8. Comparison of accuracy and error rates among ANN, DNN, CNN, and 

the proposed method. 

Figure 7, the confusion matrix, provides insight into the model’s 

classification performance across different classes. The strong 

diagonal values indicate that the majority of predictions match 

the true labels, signifying high accuracy. However, some off-

diagonal values suggest instances where the model misclassified 

certain classes, potentially due to overlapping feature spaces or 

insufficient training samples for specific categories. The 

relatively lower number of misclassifications indicates that the 

feature selection and optimization steps have effectively 

enhanced model performance. 
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Figure 8 presents a comparative analysis of different deep 

learning architectures-ANN, DNN, CNN, and the proposed 

RNN-PSO model-based on accuracy and error rates. The RNN-

PSO model outperforms the other methods in accuracy while 

maintaining a lower error rate. ANN, being a simpler model, has 

the highest error rate, while CNN and DNN show competitive 

performance. The enhanced performance of RNN-PSO 

demonstrates that the integration of optimized feature selection 

and temporal sequence learning leads to a more efficient and 

accurate classification system. 

6. Discussion 

The proposed RNN-PSO framework introduces a novel and 

impactful approach for EEG-based emotion recognition by 

integrating recurrent temporal modeling with optimized feature 

selection. Unlike conventional models such as CNNs and DNNs, 

which primarily capture spatial features, the RNN structure is 

inherently capable of learning long-term temporal dependencies 

within EEG sequences, providing a more natural fit for 

sequential brainwave data. Furthermore, the incorporation of 

Particle Swarm Optimization (PSO) for both feature selection 

and hyperparameter tuning addresses two critical challenges in 

EEG classification: high dimensionality and overfitting. By 

selecting the most informative features and optimizing learning 

parameters simultaneously, the RNN-PSO model significantly 

reduces computational complexity while maintaining high 

classification performance. Compared to existing methods, 

which often rely on manual feature engineering or fixed 

hyperparameter settings, the dynamic adaptation achieved 

through PSO ensures that the RNN model operates under optimal 

conditions for each dataset. This dual-level optimization leads to 

superior results across all major evaluation metrics, as evidenced 

by improvements in accuracy, precision, recall, and F1-score 

over recent state-of-the-art studies. In particular, the ability of 

the RNN-PSO model to maintain high recall rates while 

minimizing false positives is crucial for sensitive applications 

such as healthcare monitoring and brain-computer interfaces. 

The unique contribution of this work lies in the synergistic 

integration of RNN’s sequence learning capabilities with PSO's 

global search optimization, a combination that has not been 

extensively explored in EEG emotion recognition tasks. 

Additionally, the use of a large and clinically diverse dataset 

(TUH EEG) enhances the robustness and generalizability of the 

findings. By offering a scalable, efficient, and highly accurate 

framework, the RNN-PSO model sets a new benchmark for real-

time, reliable EEG-based emotion classification, and opens 

pathways for future research into adaptive, intelligent brain-

computer interaction systems. While the proposed RNN-PSO 

framework demonstrates superior performance in EEG-based 

emotion recognition, it is important to acknowledge its 

limitations. One primary limitation lies in the computational 

complexity of the hybrid approach. Integrating PSO for both 

feature selection and hyperparameter tuning significantly 

increases the computational burden during training, especially 

when dealing with large EEG datasets or when fine-grained 

parameter exploration is required. Although this cost is justified 

by the resulting performance gains, it may pose challenges for 

real-time or resource-constrained applications. Future research 

could investigate lightweight optimization strategies, such as 

distributed PSO variants or pruning methods, to accelerate 

convergence without sacrificing model quality. Another 

limitation stems from the characteristics of the TUH EEG dataset 

itself. Although the TUH corpus is extensive and clinically 

relevant, it is not specifically designed for emotion recognition. 

Emotional labels were inferred indirectly based on physiological 

indicators, which may introduce noise or ambiguity into the 

ground truth. Moreover, the dataset predominantly represents 

clinical populations, potentially limiting the model’s 

generalizability to broader, healthy, or cross-cultural samples. 

To address this, future studies should consider integrating more 

diverse datasets explicitly labeled for emotion recognition, such 

as DEAP, SEED, or DREAMER, and evaluating model 

transferability across different populations. To better understand 

the internal decision-making of the RNN model, future work 

could visualize the learned hidden state activations using 

techniques such as t-SNE (t-distributed stochastic neighbor 

embedding) or PCA (principal component analysis). Such 

visualizations would allow us to observe how the model clusters 

different emotional states in its latent space, providing 

interpretability to the learned representations. Early exploratory 

plots suggest that after PSO feature selection, the emotional 

classes become more separable in the RNN’s hidden layers, 

confirming that the optimization phase aids in structuring the 

input space for better generalization. 

The proposed RNN-PSO framework for EEG-based emotion 

recognition holds significant promise for various real-world 

applications. In the domain of mental health monitoring, such 

systems can assist clinicians in continuously tracking emotional 

fluctuations in patients with conditions like depression, anxiety, 

or bipolar disorder. By providing objective, real-time indicators 

of emotional states, these technologies could enable earlier 

intervention and more personalized treatment plans. In human-

computer interaction (HCI), integrating emotion recognition into 

interfaces can create more adaptive and empathetic systems that 

adjust responses based on user emotions, enhancing user 

experience and engagement. Similarly, in the field of affective 

computing, emotion-aware systems could revolutionize 

education, gaming, entertainment, and assistive technologies, 

making machines more responsive to human affective cues. 

7. Conclusions and Future Work 

The paper describes the combination of the employed RNN 

model and feature selection via PSO for tracking classified 

emotions based on EEG data. During the individual monitoring, 

EEG data was collected while a measured behavior and a 

stimulus were presented in some emotional situations. 

Subsequently, the features were derived as statistics of wavelet 

decomposed data via several methods. Subsequently, the PSO 

algorithm is used for optimal feature selection for the extracted 

data in order to reduce its overall dimensionality. The proposed 

model contains an LSTM network that has a specific architecture 

for classification. It also evaluates the performance of the 

machine learning methods-based components of the new 

approach versus the older approaches. With fewer selected 

features, better classification could be achieved with the RNN 

model. Altogether, classification accuracy is superior for all 
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compared model solutions with the use of red RNN and PSO. 

Experimental results demonstrated that the model achieved an 

overall accuracy of 94.2%, outperforming conventional deep 

learning architectures such as ANN (85.1%), DNN (88.4%), and 

CNN (91.3%). Furthermore, the model showed values such as 

mean squared error (MSE) of 0.021, mean absolute error (MAE) 

of 0.034, as well as root mean squared error (RMSE) of 0.145. 

These details suggest the model was accurate and possessed 

minimal error in its forecasts. These findings were further 

supported by F1-score as well as recall and precision measures 

which confirmed the model’s effectiveness on the imbalanced 

EEG datasets. The F1-score was observed to plateau at 93.8% 

while recall and precision stood at 94.1% and 93.5%. These 

metrics strengthen the argument that recognition of temporal 

patterns through RNN in conjunction with PSO feature selection 

and hyperparameter optimization is effective. As for confusion 

matrix interpretation, there were few instances of 

misclassification which further substantiated the framework’s 

capability to correctly categorize various EEG signals. 

Nevertheless, some results are quite promising. Building upon 

the promising results of the RNN-PSO framework, several 

avenues for future research are envisioned to further enhance 

classification performance and system robustness. One 

immediate direction involves the integration of newer deep 

learning architectures specifically designed for sequential data 

modeling. For instance, Transformer-based models such as the 

Vision Transformer (ViT) and Temporal Fusion Transformer 

(TFT) have demonstrated remarkable success in capturing long-

range dependencies and could be adapted for EEG emotion 

recognition tasks. Furthermore, Graph Neural Networks (GNNs) 

could be explored to model the spatial relationships among EEG 

electrode sites more effectively, leveraging the natural topology 

of brain activity. 
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